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Question: How does a proximate particle effect
microanalysis in a low-vacuum SEM?

Consider two particles of different composition on a carbon 
substrate analyzed in H2O vapor.



  

Introduction to NISTMonte
● Monte Carlo simulation of electron transport 

and x-ray generation and transport
– Written in Java (J2SE 1.4 or higher)
– Available with source code

● Features
– Arbitrarily complex sample geometries
– Interchangeable physics
– Mix & match detection schemes
– Scriptable in Jython, Java or ?



  

Sample geometries
● Constructed from basic 3D shapes

– Sphere, Cylinder, Block, Intersection of Planes
● 3D shapes may be combined or differenced

– 2 spheres + cylinder -> cylinder with rounded ends

– Sphere - plane -> hemisphere
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Interchangeable physics
● Elastic scattering models

– Screened Rutherford
– NIST SRM-64 (Jablonski, Salvat & Powell)
– Czyzweski (Czyzewski, MacCallum, Romig & Joy)

● Mass absorption coefficients
– NIST FFAST
– Heinrich IXCOM 11
– Many more...

● Energy loss models
● Characteristic x-ray generation model



  

Detection Schemes
● Backscatter 

– Energy resolved backscatter detector
● Annular detector

– Records electrons passing through a concentric set of planar rings
● X-ray emission image

– Image per x-ray line showing the spatial dependence of generation and 
emission

● Trajectory image

– Showing electron trajectories projected into a plane
● Trajectory VRML

– Shows sample geometry and electron trajectories in a 3D CAD-like view
● Spectrum generation

– Models an EDS detector measuring characteristic & bremsstrahlung 
emission



  

Scriptable
tw=jio.OutputStreamWriter(jio.FileOutputStream(baseDir+"result.csv"),cs.Charset.
forName("UTF-8"))
for pressure in [5.0, 10.0, 30.0, 50.0, 100.0]: # pascal

print "Pressure = %g Pa" % (pressure)
# create an instance of the model
monte = nm.MonteCarloSS()
monte.setPhysics(nm.VPCompatiblePhysics())
monte.setBeamEnergy(epq.ToSI.keV(25.0))
# create a region of N2 above the substrate (15 mm)
mat = epq.Gas([epq.Element.N],[2], pressure,epq.ToSI.centigrade(25.0), "N2")
shape = nm.SimpleBlock([width/2.0,width/2.0,-15.0e-3],[-width/2.0,-

width/2.0,0.0])
vpRegion = monte.addSubRegion(monte.getChamber(),mat, shape)
# place an annular detector above the primary particle
annular1 = nm.AnnularDetector(epq.ToSI.micrometer(1000.0), 100, 

[0.0,0.0,0.0], [0.0,0.0,-1.0])
monte.addActionListener(annular1)
monte.runMutipleTrajectories(10000)
tw.write("Pressure\t%g Pa\n" % (pressure))
annular1.dump(tw)

tw.close()

Loop over pressure

Initialize the model

Define the
geometry

Add detector(s)

Run the analysis
Write the results

Pro: Flexible, permanent record, iterable
Con: Unintuitive, intimidating to newcomers



  

Monte Carlo
● Standard model

– Only atomic interactions are considered 
● no molecular or solid state effects are included

– Only elastic scattering is modeled explicitly
– Inelastic events are handled on average using a 

continuously slowing down approximation based on 
the macroscopic parameter, J, the mean ionization 
potential

● Adding gas to the model
– Why not just assume gas is just a diffuse solid?



  

Primary beam



  

Elastic vs Inelastic Scattering
● Elastic 

– Scattering off of the nucleus (screened by the 
atomic electrons)

– Large angular deflection but negligible energy loss
● Inelastic

– Scattering with energy loss due to multiple atomic 
and molecular mechanisms

● Ionization, Excitation (atomic, rotational, vibrational)
– Smaller angular deflection



  

Comparing the elastic and inelastic scattering cross sections
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Inelastic scattering is strongly peaked
in the forward directions.

From Egerton, “Electron Energy-Loss Spectroscopy in the Electron Microscope”, Second Edition



  

Modeling the inelastic cross section
● The magnitude has been observed to scale with 

atomic number 

                              σi/σe~ 20/Z
● Take the form of the differential cross section 

from Colliex & Mory 1984
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Comparing elastic and elastic+inelastic at 0.64 Torr of H2O, 1 cm path
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How much does an adjacent particle contribute to the spectrum?

Measure the ratio of the number of electrons striking the primary over
the number of electrons striking the secondary.

Two 1 µm adjacent particles, the beam centered on one.
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100 µm particles
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Keep the primary particle size 1 µm, vary the secondary particle size
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Vary both primary and secondary particle sizes



  

Modeled x-ray spectra from proximate 100 µm particles



  

Modeled x-ray spectra from proximate 1 µm particles

Remind me to show the VRML!



  

NISTMonte is currently available (with source) at

http://www.duck-and-cover.com

http://www.duck-and-cover.com
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Comparing elastic and elastic+inelastic scattering

Large Angles



  

Comparing elastic and elastic+inelastic scattering

Small Angles
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